	\sim
1	
2	(C.2010)
1	

	INDIAN SCHOOL AL WADI AL KABIR	
CLASS: IX	DEPARTMENT: SCIENCE (2025-26) SUBJECT: PHYSICS	DATE: 18/11/2025
WORKSHEET NO:4	TOPIC: WORK AND ENERGY	NOTE: A4 FILE
WITH ANSWERS		FORMAT
CLASS & SEC:	NAME OF THE STUDENT:	ROLL NO.
1. If 1 newton of (a) 10J (FE TYPE QUESTIONS force displaces a body by 1m, the work done is b) 5J (c)1J (d) Depends on time speed of motion of a body, the change in K.E. is	

CLASS: IX	DEPARTMENT: SCIENCE (2025-26) SUBJECT: PHYSICS	DATE: 18/11/202
WORKSHEET NO:4 WITH ANSWERS	TOPIC: WORK AND ENERGY	NOTE: A4 FILE FORMAT
CLASS & SEC:	NAME OF THE STUDENT:	ROLL NO.
I ODIECTIV	E TYDE OLIESTIONS	
1. If 1 newton of (a) 10J (color of the color of tripling the color of the color o	(b) newton (c) watt (d) joule/s alls freely towards the earth, then its total energy (b) decreases (c) remains constant (d) first increases a bulb. The sequence of energy transfer in the proceed energy to heat and light energy to electrical energy and then to heat and light energy to heat and light	uses and then decreases
7. If a force of F (a) F/v	energy to light newtons moves a body with constant speed v, the pow (b) Fv (c)F ² v (d)v/F s 20kg is lifted up through a distance of 5 m in 10 sec	·
(a) 20Watt9. Which one of t(a) joule(c) kilowatt	(b) 10 watt (c) 30 watt (d)100 watt the following is not the unit of energy? (b) newton metre (d) none of these pring is compressed, the work is done on the spring. (b) decreases (d) remains unchanged	The potential energy
11. A force of 5N the work don	is acting perpendicular on a body producing a displa	cement of 2 m. Then

ASSERTION AND REASONING

DIRECTIONS: In the following questions, a statement of assertion (A) is followed by a statement of reason (R). Mark the correct choice as:

- (a) Both assertion (A) and reason (R) are true, and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true, but reason (R) is not the correct explanation of assertion (A).
- (c) Assertion (A) is true, but reason (R) is false.
- (d) Assertion (A) is false, but reason (R) is true.
- (e) Both Assertion and Reason are false.
- 12. **Assertion**: The kinetic energy of a body is quadrupled when its velocity is doubled.

Reason: Kinetic energy is proportional to the square of velocity.

13. **Assertion:** No work is done when a woman carrying a load on her head walks on a level road with a uniform velocity.

Reason: No work is done if the force is perpendicular to the direction of displacement

14. **Assertion:** Work done by friction on a body sliding down an inclined plane is positive.

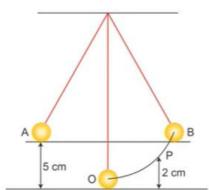
Reason: Work done is greater than zero if the angle between force and displacement is acute or both are in the same direction.

II.SHORT ANSWER TWO MARKS QUESTIONS

- 15. Define 1Watt
- 16. Identify the energy possessed by
 - i. Rolling Stone
 - ii. Stretched rubber band
- 17. A coolie is walking on a railway platform with a load of 30kg on his head. How much work is done by coolie?
- 18. A 2m high person is holding a 25 kg trunk on his head and standing at a roadway bus terminus. How much work is done by the person?
- 19. A bag of wheat is dropped from a height h. What energy conversion takes place as it reaches the ground?
- 20. What type of energy is possessed by a compressed spring?
- 21. Two balls of mass m each are raised to heights h and 2h, respectively. What will be the ratio of their potential energies?
- 22. At what speed will a body of mass 1kg have a kinetic energy of 1J?
- 23. A horse of mass 250kg and a dog of mass 30 kg are running at the same speed. Which of the two possesses more kinetic energy? How?

III. SHORT ANSWER THREE MARKS QUESTIONS

24. A man of mass 60kg runs up a flight of 30 steps in 40s. If each step is 20cm high, calculate his power.


- 25. Give an example of
 - (a) Force acting in the direction of displacement
 - (b) Force acting against the direction of displacement
 - (c) Force acting perpendicular to the direction of displacement
- 26. What will be the kinetic energy of an object if its mass is doubled and the velocity is reduced to half

IV. LONG ANSWER FIVE MARKS QUESTIONS

- 27. (a) Define Kinetic energy and derive the expression for Kinetic energy
 - (b) The masses of the scooter and bike are in the ratio of 2:3, but both are moving with the same speed of 108km/h. Compute the ratio of their kinetic energy
- 28.(a) Define potential energy. Derive an equation for gravitational potential energy
 - (b) A 5kg ball is thrown upwards with a speed of 10m/s (g=10m/s).
 - (i) Calculate the maximum height attained by it
 - (ii) Find the potential energy when it reaches the highest point

V. CASE STUDY BASED QUESTIONS

29. The following table shows that a simple pendulum consisting of a bob of mass 100 g. Initially, the bob of the pendulum is at rest at 'O'. It is then displaced to one side at A. The height of 'A' above 'O' is 5cm. (Take $g=10\text{m/s}^2$)

- i. What is the value of the potential energy of Bob at 'A', and where does it come from?
 - (a) 0.05J
- (b) 0.5J
- (c) 0.0005J
- (d)50J
- ii. What is the value of the total energy of the bob at position A?
 - (a) 1J
- (b) 0.05J
- (c) 5J
- (d) 50J
- iii. What is the value of the kinetic energy of the bob at the mean position 'O'?
 - (a) 10J
- (b)5J
- (c) 0.05J
- (d) 50J
- iv. What is the value of kinetic energy and potential energy of the bob at the position 'P', whose height above 'P' whose height above 'O' is 2cm?
 - (a) P.E=0.2J and K.E=0.3J
- (b) P.E=2.0J and K.E=3.0J
- (c)P.E = 0.002J and K.E=0.003J
- (d) P.E = 0.02 J and K.E = 0.03 J
- v. What is kinetic energy?
 - (a) Energy acquired due to motion
 - (b) Energy acquired due to rest
 - (c) Sum of potential and mechanical energy

PREVIOUS YEAR QUESTIONS

- 30. A force acting on a 10 kg mass changes its velocity from 54km/h to 90k/h. Calculate the work done by the force CBSE 2016
- 31. What is the work to be done to increase the velocity of a car from 30 km/h to 60 km/h. If the mass of the car is 1500 kg.

ANSWERS

	ANSWERS	
1.	(c)1J	
2.	(a)9 times $(K.E \alpha v^2)$ $v>3v$, $K.E>9K.E$	
3.	(d) zero (as force and displacement are perpendicular)	
4.	(a) joule	
5.	(c) remains constant	
6.	(b) chemical energy to electrical energy and then to heat and light	
7.	(b) Fv	
8.	[d]100 watt	
9.	[c] kilowatt	
10.	[a] increases	
11.	[d] zero joule	
12.	(a) Both assertion (A) and reason (R) are true, and reason (R) is the correct	
	explanation of assertion (A).	
13.	(a) Both assertion (A) and reason (R) are true, and reason (R) is the correct	
	explanation of assertion (A).	
14.	(d) Assertion (A) is false but reason (R) is true.	
15.	1 Watt is the power when 1 joule of work is done in 1 second	
16.	i. kinetic energy	
	ii. potential energy	
17.	Zero because the angle between the force and the displacement is 90°	
18.	Zero, because there is no displacement	
19.	The energy of the wheat bag changes from potential energy to kinetic energy and sound energy	
20.	Potential energy	
21.	Both bodies have the same mass.	
	Potential energy of bodies:	
	\therefore (PE)1=mgh and (PE)2=mg(2h)	
	$\Rightarrow \qquad (PE)1:(PE)2=1:2$	
22.	We know that $K.E = 1/2 \text{ m } v^2$	
	Replace K.E i.e kinetic energy by 1 J and mass (m) by 1 kg (given in the	
	question)	
	$1 = 1/2 \times 1 \times v^2$	
	$2 = v^2$ (take 2 to the other side) $v = \sqrt{2}$ m/s	
22	v = 1.414 m/s Vingtia angular is directly proportional to mass. Since mass of a house (250kg) is	
23.	Kinetic energy is directly proportional to mass. Since mass of a horse (250kg) is greater than that of a dog (30kg), the horse has greater kinetic energy for the same	
	speed.	
	эрсси.	

24.	Given m= 60kg ,t= 40s , h= $30 \times 20 \text{cm} = (30 \times 20/100) \text{m}$		
	Power= W/t=mgh /t= $(60 \times 10 \times 30 \times 0.2)/40$		
	=90W		
25.	(a) Horizontal force applied on a table to displace it		
	(b) Frictional force acting on a box which is being shifted		
	(c) Gravitational pull of Earth on the Moon		
	(c) Gravitational pull of Earth on the Moon		
26.	M = 2m and $v = v/2$		
20.	$K.E = 1/2 \text{ m v}^2$		
	New Kinetic energy = ½ of the original kinetic energy		
27.	(a) The energy possessed by a body by virtue of its motion is called kinetic		
	energy.		
	Equation for kinetic energy		
	Consider an object of mass m moving with a uniform velocity, u. It is displaced		
	through a distance, s, when a constant force F acts on it in the direction of its		
	displacement		
	Then work done,		
	$W = F \times s \dots (1)$		
	Velocity changes from u to v.		
	Let a be the acceleration produced.		
	$v^2-u^2 = 2as$ (2)		
	$S = \underline{v^2 - \underline{u^2}}$		
	$s = \frac{v^2 - u^2}{2a}$ (3)		
	We know,		
	F = ma(4)		
	Substituting equations (4) and (3) in (1)		
	Work done by the force, F, is		
	$W= ma \times (\underline{v^2 - u^2})$		
	2a		
	$W = \underline{1} m(v^2 - u^2)$ (5)		
	7(3)		
	Work done - Change in Vinetia Energy		
	Work done = Change in Kinetic Energy		
	If the object is starting from its stationary position, that is, u=0, then		
	$W = \underline{1} m v^2$		
	2(6)		
	Thus, the kinetic energy possessed by an object of mass, m and moving		
	with a uniform velocity, v, is		
	$\mathbf{E_{k}} = \mathbf{\underline{1}} \mathbf{m} \mathbf{v}^2$		
	2		
) Kinetic energy α Mass of body		
	Let mass of scooter=m _s =2m		
	Mass of bike $=m_b=3m$		
	Kinetic energy of scooter/Kinetic energy of bike= m_s/m_b = 2m/3m=2:3		
28.	The potential energy of an object is the energy possessed by the object due to its		
20.	position or shape.		
	Equation for Potential Energy		
	Consider an object of mass m is raised to a height h from the ground, the		
	force required to raise the object is equal to the weight of the object.		
	Force, F = mg		
	$Work\ done = Force imes displacement$		

Potential energy gained by the object $E_p = mgh$ Potential energy gained by the object $E_p = mgh$ Given, mass of the ball, $m = 6 \text{ kg}$ Speed of the ball, $m = 16 \text{ kg}$ Speed of the ball, $m = 16 \text{ kg}$ (a) initial kinetic energy of the ball, $E_a = \frac{1}{3}mv^2 = \frac{1}{2}(3)(10)^2 = 200.3$ When the ball reactives the highest point, its kinetic energy becomes zero and the unitive kinetic energy is converted into its potential energy. (b) If is the maximum height attained by the ball, $E_p = 200 = \frac{200}{(5)(10)} = 8 \text{ m}$ 29. i. The work done in raising the bob through a height of 5 cm (against the gravitational attraction) gets stored in the bob in the form of its potential energy. PE=mgh = $0.1 \times 10 \times 0.05 = 0.05 \text{ J}$ iii. At position A, PE = 0.05 J , KE = 0 So, Total energy = 0.05 J . iv. PE at P = mgh = $0.1 \times 10 \times 2 \times 10^2$ = $0.05 \times 10 \times 10^2$ = 0.03×10^2 Work done on an object =change in kinetic energy Work done on an object =change in kinetic energy Work done = $1/2\text{min}(v^2 - u^2)$ W= $5(25^2 - 15^2)$ W= $5(25^2 - 15^2)$ W= $5(25^2 - 15^2)$ W= $5(25^2 - 15^2)$ W= $5(25^2 - 225)$ = $5 \times 400 = 2000$ Work done = change in K.E = $750 \times 208.5 = 156375 \text{ J}$ Prepared by: Prepared by: Prepared by: Prepared by: Prepared by: Checked by: HOD Science					
$E_p = mgh$ Given, mass of the ball, $w = 15 \text{ mg/s}$ Speed of the ball, $w = 15 \text{ mg/s}$ (a) Initial kinetic energy of the ball, $\mathbf{k}_0 = \frac{1}{2}m\mathbf{v}^2 = \frac{1}{2}(8)(10)^2 = 250.J$ When the ball reaches the highest point, its kinetic energy becomes zero and the entire kinetic energy is converted into its potential energy. $\mathbf{k}_0 = \frac{1}{2}m\mathbf{v}^2 = \frac{1}{2}(8)(10)^2 = 250.J$ (b) It is the maximum height attained by the ball, $\mathbf{k}_p = 260.J$ (c) It is the maximum height attained by the ball, $\mathbf{k}_p = mgh \text{ or } mgh = 250.J$ or $h = \frac{250}{63(10)} = h \text{ m}$ 29. i. The work done in raising the bob through a height of 5 cm (against the gravitational attraction) gets stored in the bob in the form of its potential energy. $PE = mgh = 0.1 \times 10 \times 0.05 = 0.05J$ ii. At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iii. At mean position, potential energy is zero, hence KE at O = 0.05 J. iv. $PE \text{ at } P = mgh$ $= 0.1 \times 10 \times 2 \times 10^2$ $= 0.05 - 0.02$ $= 0.03 J$ v. (a) Energy acquired due to motion $m = 10 \log_p u = 54 \text{km/h}, v = 90 \text{km/h}$ $u = 15 \text{m/s}, v = 25 \text{m/s}$ Work done on an object = change in kinetic energy Work done energy = PE $= 0.05 - 20.02$ $= 0.03 J$ $V = 5(25^2 - 15^2)$ $V = -5(25^2 - 15^2)$ $V = -5(25$		$or W = mg \times h = mgh$			
Given, mass of the ball, $m = R + R - R + R + R + R + R + R + R + R +$		Potential energy gained by the ob-	ject		
Speed of the bell, v = 10 m/s (a) Initial kinetic energy of the ball, Ex = \frac{1}{2}mv^3 = \frac{1}{2}(0)(10)^2 = 280 J When the ball reaches the highest point, its kinetic energy becomes zero and the entire kinetic energy is converted into its potential energy. Ex = 280 J (b) If his the maximum height attained by the ball. Ex = make or make = 280 J or h = \frac{280}{(6)(10)} = 5 m 29. i. The work done in raising the bob through a height of 5 cm (against the gravitational attraction) gets stored in the bob in the form of its potential energy. PE=mgh = 0.1×10×0.05=0.05 J ii. At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iii. At mean position, potential energy is zero, hence KE at O = 0.05 J. iv. PE at P = mgh = 0.1 × 10 × 2 × 10^2 = 0.02 J K.E = Total energy = PE = 0.05 = 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v²-u²) W=S(25²-15²) W=S(625-225) = 5×400=2000 Work done W=2kJ Prepared by: Checked by:		$E_p = mgh$			
(a) initial kinetic energy of the ball, $E_{k} = \frac{1}{2}mv^{2} = \frac{1}{3}(6)(10)^{2} = 280.3$ When the ball reaches the highest point, its kinetic energy becomes zero and the entitive kinetic energy is converted into its potential energy. $E_{k} = 280.3$ (b) If his the maximum helpft attained by the ball, $E_{k} = mash \text{ or } msh = 280.3$ or $\frac{280}{mg} = \frac{280}{(6)(10)} = 5 \text{ m}$ 29. i. The work done in raising the bob through a height of 5 cm (against the gravitational attraction) gets stored in the bob in the form of its potential energy. $PE = mgh = 0.1 \times 10 \times 0.05 = 0.05 \text{ J}$ iii. At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iii. At mean position, potential energy is zero, hence KE at O = 0.05 J iiv. $PE = tt P = mgh$ $= 0.05 - 0.02$ $= 0.02 J$ V. (a) Energy acquired due to motion 30. $m = 10 \text{ Kg}, u = 54 \text{ km/h}, v = 90 \text{ km/h}$ $u = 15 \text{ m/s}, v = 25 \text{ m/s}$ Work done on an object = change in kinetic energy Work done = 1/2 m(v ² - u ²) W=5(25 ² - 15 ²) W=5(25 ² - 25) =5 \times 400 = 2000 Work done W=2kJ $Prepared by: Checked by:$					
When the ball reaches the highest point, its kinetic energy becomes zero and the entire kinetic energy is converted into its potential energy. ∴ E _p = 280.0 (b) It his the maximum height attained by the ball. E _p = mgh or mgh = 280.3 or h = 280/(63/10) = 5 m 29. i. The work done in raising the bob through a height of 5 cm (against the gravitational attraction) gets stored in the bob in the form of its potential energy. PE=mgh = 0.1×10×0.05=0.05 J ii. At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iii. At mean position, potential energy is zero, hence KE at O = 0.05 J. iiv. PE at P = mgh = 0.1 × 10 × 2 × 10² = 0.02 J KE = Total energy - PE = 0.05 = 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object = change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(625-225) = 5×400=2000 Work done W=2kJ Prepared by: Checked by:					
the entire kinetic energy is converted into its potential energy. (b) If it is the maximum height attained by the ball. E _p = mgh or mgh = 250 J or h = 250 / mg = (5)(10) = 5 m 29. i. The work done in raising the bob through a height of 5 cm (against the gravitational attraction) gets stored in the bob in the form of its potential energy. PE=mgh = 0.1×10×0.05=0.05J ii. At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iii. At mean position, potential energy is zero, hence KE at O = 0.05 J. iv. PE at P = mgh = 0.1 × 10 × 2 × 10 ² = 0.02 J K.E = Total energy - PE = 0.05 - 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object = change in kinetic energy Work done=1/2m(v ² -u ²) W=5(25 ² -15 ²) W=5(625-225) = 5×400=2000 Work done W=2kJ Prepared by: Checked by:		$\mathbf{E_k} = rac{1}{2}\mathbf{mv}^2 = rac{1}{2}(5)(10)^2 \ = 250\mathrm{J}$			
29. i. The work done in raising the bob through a height of 5 cm (against the gravitational attraction) gets stored in the bob in the form of its potential energy. PE=mgh = 0.1×10×0.05=0.05 J ii. At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iii. At mean position, potential energy is zero, hence KE at O = 0.05 J iv. PE at P = mgh = 0.1 × 10 × 2 × 10² = 0.03 J K.E = Total energy = PE = 0.05 – 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object = change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(25²-225) = 5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J		When the ball reaches the highest point, its kinetic energy becomes zero and the entire kinetic energy is converted into its potential energy.			
29. i. The work done in raising the bob through a height of 5 cm (against the gravitational attraction) gets stored in the bob in the form of its potential energy. PE=mgh = 0.1×10×0.05=0.05 J ii. At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iii. At mean position, potential energy is zero, hence KE at O = 0.05 J. iv. PE at P = mgh = 0.1 × 10 × 2 × 10² = 0.02 J K.E = Total energy - PE = 0.05 - 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object = change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(625-225) = 5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J		(b) If h is the maximum height attained by the ball,			
29. i. The work done in raising the bob through a height of 5 cm (against the gravitational attraction) gets stored in the bob in the form of its potential energy. PE=mgh =0.1×10×0.05=0.05J ii. At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iii. At mean position, potential energy is zero, hence KE at O = 0.05 J iv. PE at P = mgh = 0.1 x 10 x 2 x 10² = 0.02 J K.E = Total energy - PE = 0.05 - 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(625-225) =5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J		${f E_p=mghormgh=250J}$			
The work done in raising the bob through a height of 5 cm (against the gravitational attraction) gets stored in the bob in the form of its potential energy. PE=mgh =0.1×10×0.05=0.05J iii. At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iiii. At mean position, potential energy is zero, hence KE at O = 0.05 J iv. PE at P = mgh = 0.1 x 10 x 2 x 10² = 0.02 J K.E = Total energy - PE = 0.05 - 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v²-u²) W=5(625-225) =5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J		or $\mathbf{h} = rac{250}{\mathbf{mg}} = rac{250}{(5)(10)} = 5\mathbf{m}$			
gravitational attraction) gets stored in the bob in the form of its potential energy. PE=mgh = 0.1×10×0.05=0.05J iii. At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iiii. At mean position, potential energy is zero, hence KE at O = 0.05 J iv. PE at P = mgh = 0.1 x 10 x 2 x 10² = 0.02 J K.E = Total energy - PE = 0.05 - 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(25²-25²) =5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:	29.	i.			
gravitational attraction) gets stored in the bob in the form of its potential energy. PE=mgh = 0.1×10×0.05=0.05J iii. At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iiii. At mean position, potential energy is zero, hence KE at O = 0.05 J iv. PE at P = mgh = 0.1 x 10 x 2 x 10² = 0.02 J K.E = Total energy - PE = 0.05 - 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(25²-25²) =5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:		The work done in raising the bob throu	gh a height of 5 cm (against the		
PE=mgh = 0.1×10×0.05=0.05J iii. At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iiii. At mean position, potential energy is zero, hence KE at O = 0.05 J iv. PE at P = mgh = 0.1 x 10 x 2 x 10 ⁻² = 0.02 J K.E = Total energy - PE = 0.05 - 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v ² -u ²) W=5(25 ² -15 ²) W=5(625-225) =5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:			. [1] 전경 : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1] : [1]		
iii. At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iiii. At mean position, potential energy is zero, hence KE at O = 0.05 J iv. PE at P = mgh = 0.1 x 10 x 2 x 10² = 0.02 J K.E = Total energy - PE = 0.05 - 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object = change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(625-225) =5×400=2000 Work done W=2kJ 31 Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:					
At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iii. At mean position, potential energy is zero, hence KE at O = 0.05 J iv. PE at P = mgh = 0.1 x 10 x 2 x 10² = 0.02 J K.E = Total energy - PE = 0.05 - 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(625-225) =5×400=2000 Work done W=2kJ 31 Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:					
So, Total energy = 0.05 J iii. At mean position, potential energy is zero, hence KE at O = 0.05 J iv. PE at P = mgh = 0.1 x 10 x 2 x 10 ² = 0.02 J K.E = Total energy - PE = 0.05 - 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v ² -u ²) W=5(25 ² -15 ²) W=5(625-225) =5×400=2000 Work done W=2kJ 31 Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:		At position A, PE = 0.05 J, KE = 0 So, Total energy = 0.05 J iii. At mean position, potential energy is zero,			
At mean position, potential energy is zero, hence KE at O = 0.05 J iv. PE at P = mgh = 0.1 x 10 x 2 x 10 ² = 0.02 J K.E = Total energy - PE = 0.05 - 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v ² -u ²) W=5(25 ² -15 ²) W=5(625-225) = 5×400=2000 Work done W=2kJ 31 Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:					
hence KE at O = 0.05 J. iv. PE at P = mgh = 0.1 x 10 x 2 x 10 ² = 0.02 J K.E = Total energy - PE = 0.05 - 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(625-225) =5×400=2000 Work done W=2kJ 31 Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:					
iv. PE at P = mgh = 0.1 x 10 x 2 x 10 ⁻² = 0.02 J K.E = Total energy – PE = 0.05 – 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v ² -u ²) W=5(25 ² -15 ²) W=5(625-225) =5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:					
PE at P = mgh = 0.1 x 10 x 2 x 10 ⁻² = 0.02 J K.E = Total energy - PE = 0.05 - 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v ² -u ²) W=5(25 ² -15 ²) W=5(625-225) =5×400=2000 Work done W=2kJ 31 Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:					
= 0.1 x 10 x 2 x 10 ² = 0.02 J K.E = Total energy – PE = 0.05 – 0.02 = 0.03 J v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(25²-15²) W=5(625-225) =5×400=2000 Work done W=2kJ 31 Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:		Contents of the contents of th			
## Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. ## Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. ## Work done = change in K.E = 750 x 208.5 == 156375 J ## Prepared by: Checked by:		$= 0.1 \times 10 \times 2 \times 10^{-2}$ $= 0.02 \text{ J}$ K.E = Total energy - PE			
= 0.05 - 0.02					
v. (a) Energy acquired due to motion 30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(625-225) =5×400=2000 Work done W=2kJ 31 Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:					
30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(625-225) =5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:					
30. m=10kg, u=54km/h, v=90km/h u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(625-225) =5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:		v. (a) Energy acquired due to motion			
u=15m/s, v=25m/s Work done on an object =change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(625-225) =5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:	30.				
Work done on an object =change in kinetic energy Work done=1/2m(v²-u²) W=5(25²-15²) W=5(625-225) =5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:		=			
W=5(25 ² -15 ²) W=5(625-225) =5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:					
W=5(625-225) =5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:		` '			
=5×400=2000 Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:					
Work done W=2kJ Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:					
Solution: Mass of car, m = 1500 kg. Initial velocity, u = 30 km/h = 8.33 m/s. Final velocity, v = $60 \text{ km/h} = 16.67 \text{ m/s}$. Work done = change in K.E = $750 \times 208.5 == 156375 \text{ J}$ Prepared by: Checked by:					
velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:		Work done W=2kJ			
velocity, v = 60 km/h = 16.67 m/s. Work done = change in K.E = 750 x 208.5 == 156375 J Prepared by: Checked by:	21		1 1/2 201 // 022 // 51 1		
Work done = change in K.E = $750 \times 208.5 == 156375 \text{ J}$ Prepared by: Checked by:	31	_	velocity, $u = 30 \text{ km/h} = 8.33 \text{ m/s}$. Final		
		1	== 156375 J		
		Prenared by:	Checked by:		
TMT WILLIAM DONALA SEEMANINV TODO SCIENCE		Mr William Donald Seemanthy	HOD Science		